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ABSTRACT

This paper develops the number of feasible solutions (m-tours)

for both the asymmetric and symmetric m-travelling salesmen problems.

The proofs are constructive and it is shown how these results may be

used to design an enumeration tree for incorporation within a general

branch-and-bound algorithm. In addition, for the m-travelling sales-

men problem defined over the Euclidean vector space in which the num-

ber of salesmen used is a decision variable, it is shown that there

exists an optimal tour using only one salesman.
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I. INTRODUCTION

One of the most extensively studied models in the operations

research literature is the classical travelling salesman problem

(see [2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 22,

24, 25, 27, 28, 31, 32, 34, 35, 36]). Two generalizations of this

model which allow for multiple salesmen have also been developed

(see [1, 5, 12, 20, 24, 26, 29, 30, 33]). Let m denote the num-

ber of salesmen available for assignment and define a baZUman'S

towi (also called a towt. in this paper) as a sequence of distinct

cities {n, ii, i2, ..., iX} where k > 1. These generalizations

differ as to whether exactly m or at most m salesmen must be as-

signed a tour. For the case in which at most m salesmen must be

used, the number of salesmen becomes a decision variable.

We now formally state the two models addressed in this expo-

sition. Given n cities (1, ..., n) and m salesmen, all located at

city n, we wish to find a set of tours such that each city other

than n is a member of exactly one tour. Let c_ denote the distance1J

from city i to city j and let c1 + c. + ... + c . + c.

denote the distance for the salesman's tour {n, il, i2, ...,I iZ.

The objective is to make salesman assignments so that the total

distance travelled by all salesmen is a minimum. If the optimal

solution must be composed of m tours, then we call this model the

fixed m-travelling salesmen problem (FNTSP). If m is an upper bound

I
,o on the number of tours in the optimal solutions, then we call this

model the variable m-travelling salesmen problem (rMTSP). For the

variable m case there may be fixed charges associated with the vari-

ous salesmen. Clearly, for m = 1, both of these models specialize
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to the classical travelling salesman model. If the distances c ij =

cji for all city pairs, then these models are called 6ymrnetAic; other-

wise, they are called aymmztxc.

The two generalized models discussed above were first formulated

in integer programming terms by Miller, Tucker, and Zemlin [24]. La-

ter, Bellmore and Hong [5) proved that the asymmetric versions of

FMTSP and VMTSP are each equivalent to asymmetric travelling salesman

problems (TSP) defined on n+m-i cities. Extensions of these results

for the symmetric VMTSF have been presented by Hong and Padberg [20]

and by Rao [29].

This exposition presents new results vhich may be used to aid

in the development of algorithms which attack these generalized models

directly. The major results are as follows:

(i) The number of feasible solutions for a n city

asymmetric fixed m-travelling salesmen problem

having m salesmen is

(n-i1 (n-2) !.

(ii) The number of feasible solutions for a n city

symmetric fixed m-travelling salesmen problem

*having m salesmen is

(m~~i'2 -2i + 1 nm-)

i-m \,~/\m-i/ nl mi2nm21

0
where mI  min(l, n-m-l), m2  min(m, n-m-l), l(w) =

1 for any w, and -l! = 0! = 1.

(iii) If the triangle inequality is satisfied, then

there exists an optimal solution to the variable

m-travelling salesmen problem having one sales-

man's tour.
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The first two results may be used to design an enumeration tree for

incorporation within a branch-and-bound algorithm.(e.g. [1, 12, 331).

The third result indicates that any VMTSP defined on a Euclidean vec-

tor space degenerates to the single salesman case.
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II. FIXED M-TRAVELLING SALESMAN PROBLEM

2.1 Asymmetric Case

It is well known that there are (n-l)! tours for an n city asym-

metric TSP on a complete graph. Therefore, using the results of Bell-

more and Hong [5], the one salesman equivalent of the asymmetric FMTSP

has (n+m-2)! possible tours on a complete graph. Some of these tours

are not feasible for FMTSP and are eliminated by using infinite cost

on some of the arcs. The following theorem presents the exact number

of feasible solutions for the asymnetric fixed m-travelling salesman

problem.

Theorem 1.

Let n > m. The number of feasible solutions for the n city

asymmetric FMTSP having m salesmen is

(_ (n-i)!

Proof: The proof is constructive. Any m-tour may be constructed in

the following manner: Select m nodes to be the initial nodes visited

mi ways. Each of these
by the m salesmen. These may be selected in (l w

selections may be displayed as shown in Figure la. This structure may

be viewed as consisting of m chains (C1, ...I C ) beginning at city n

and n-m-i other chains (FI, .... F 1 ), which do not include city n

as illustrated in Figure lb.

Figure 1 About Here
ri

Suppose chain Fn-I is appended to the end of one of the other chains.

n-1-
This chain may be appended to a chain fixed to n in m ways and may be

appended to the end of a chain not fixed to n in n-m-2 ways for a total
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of m+n-m-2 = n-2 ways. After renumbering, the chains may be displayed

as shown in either Figure 2a or 2b. For either case there will be m

chains C1, ... , C and n-m-2 chains FI, ..., F 2 . Suppose chain

F 2  is appended to the end of one of the other chains. This may

be accomplished in n-3 ways to produce a new set of chains C1 , ..., Cm

and F ... Fnm3 . This procedure can occur exactly n-m-i times

yielding the m chains fixed to n. A feasible m-tour is obtained by

connecting the last city in each of the m chains to the base city n.

This gives (n-2)(n-3) ... (m) possible tours for each of the -)

initial selections.

Figure 2 About Here

Hence, the total number of m-tours on n cities is given by

(n-i (n-2)(n-3) ... m =  (-I (n-2)!
M m (m-l)! )

This completes the proof of Theorem 1.

A 5 city 2 salesman enumeration tree using the above construction is illu-

strated in Figure 3.

Figure 3 About Here

A comparison of the number of feasible m-tours versus the number

of 1-tours for the equivalent one salesman problem is given in Table 1.

For 9 cities and 3 salesmen, there are 141,120 possible 3-tours versus

3,628,800 possible 1-tours for the equivalent one salesman problem onN a complete graph. Based on this analysis, it may be advantageous to

attack FWrSP directly rather than its one salesman equivalent.

Table I About Here
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Note that for values of n > 5, as m increases, the number of feasible

solutions increase to a maximum and then decrcascs to 1. This is coun-

ter-intuitive to the computational experience ([1, 33]) that holding all

other parameters fixed, the problems become easier.

2.2 Symmetric Case

Also of interest is the number of m-tours for the symmetric FMTSP.

The following theorem gives this result.

Theorem 2

Let n > m. The total number of distinct m-tours for the n city

symmetric FMTSP having m salesmen is

m2 2 n- (+ Ii (n-m-2)! (_)

2 l(m+ 1 (2i - 2 j+l
i=Ml (+i)m-1 ~

0

where m = min (1, n-m-i), m, = min (m, n-m-i), 1 (-) = 1, and -l! =

j=1
i 0! = 1.

Proof: We say that a tour having city n and one additional city is a

singleton tour while a tour having city n and two additional cities is

a doubleton tour. The proof is constructive with the initial city as-

signment involving only singleton and doubleton tours.

Depending on the values of n and m, the number of non-singleton

tours varies as follows:

*i If 0 < n-m-i < m, then the nunher of non-singleton tours varies from

min (1, n-m-l) to n---i.

If n-m-l > m, then the number of non-singleton LI.,.r: varies from 1 to

M.
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Therefore, for any selection of n and m the total number of non-single-

ton tours is bounded below by m I = min (1, n-m-l) and above by m2 = min

(m, n-m-l).

Let i E {m1 , m1 + 1, ... , m2 }. We now determine the number of ways

in which m tours can be constructed such that i tours are doubletons and

m-i tours are singletons. For these tours we select m-i + 2i = m+i cities

from the n-i available cities. This can be done in (n- ways. Given

m+i cities, the m-i singletons can be selected in (m+i) ways. This' \m-i)

leaves i doubletons to be selected from 2i cities. Since the distances
i

are symmetric, this can be accomplished in R (2i - 2j + 1) ways. This
j=1

gives

(n-l) (m+i'
m+i \m-i (2i - 2j + 1) (2)

j=l

ways to construct m tours such that i are doubletons and m-i are single-

(n- l'
tons. If i = 0, this expression reduces to m

This leaves n-m-i-i cities to be appended to the i doubletons.

Using the same logic used to develop (1), this may be done in

(n-m-2)! (3)
(i-l)!

ways where -i! = 0! = 1. Taking the product of (2) and (3) and summing

over all selections of i yields the desired result. This completes the

proof of Theorem 2.

The total number of feasible solutions for various symmetric MTSP is

given in Table 2.

Table 2 About Here

Note that for an n=9, m=3 problem, there are 141,120 = 4 times as many
35,280

tours for the asymmetric case as for the symmetric case. Different

values of m an n yield different factors. For the m=l case, the fac-

tor is, of course, always 2.



III. VARIABLE M-TRAVELLING SALESMAN PROBLEM

Let i, j, and k denote any cities with travel distances of c..,

Cik , and c kj. We say that a TSP satisfies the t£iangZe inequ~aity if

cij < Cik + ckj for all cities i, j, and k. For a TSP defined on the

Euclidean vector space, the triangle inequality is automatically sat-

isfied. We now show that there exists an optimal solution to the

variable m-travelling salesmen problem with one salesman's tour.

Theorem 3

If the triangle inequality is satisfied for an n city VMTSP hav-

ing m salesman, then there exists an optimal solution having only one

salesman's tour.

Proof: Suppose the optimal solution for VMTSP uses m >1 salesmen.

Let R= {(n, il) , (il, i). .... , (it, n)} and R,, = {(n, J1), J1 l J21 )

(j n)} denote two of these tours. Then R3 
= RIR 2 {(izj1 )} -

{(i, n), (n I , jl)} is a tour. Since c.k < cn + c , the length of

R3 is no greater than the length of the sum of the lengths of R1 and R2 .

Therefore, there is an alternate optima using m -l tours. Repeating

this argument a total of m -1 times yields an optimal solution with one

tour. This completes the proof of Theorem 3.

Note that this result holds for both the asymmetric and symmetric problem

as well as the problem with nonnegative fixed charges associated with the

m salesmen.
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IV. SUMMARY AND CONCLUSIONS

This paper presents several new results which can be used to di-

rectly enhance existing branch-and-bound algorithms for the m-travel-

ling salesmen problem (such as Svetska and Huckfeldt [33] and Gavish

and Srikanth [121). In addition, it is shown that for larger values

of n, the number of feasible soiutions increases as m increases and

then decreases to one. Unlike the single salesman case, for given

values of n and m the total number of tours for the asymmetric prob-

lem can be substantially larger (4 or more) than the number of tours

for the symmetric case. We believe that this calls for specialized

algorithms for these two cases. Finally, we show that the model in

which the number of salesmen is a variable degenerates to the one

salesman case whenever the triangle inequality holds.

9
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Table 1. Comparison Of Number Of Solutions To The Assymetric
FMTSP With The Equivalent One Salesman Problem

i _2 3 4 5

3 21 i 1

(2) -(6) :

4 6 6 1 - -

(6) (24) (120)_______________

24 36 12 1 -

(24) (120) (720)1 (5040)

6 120 240 120 20
(120) (720) (5040) (40320) (362880)

71 720 1800 1200 300 30
(720) (5040) (40320) (362880) (3628800);

8 I  5040 15120 12600 4200 630
I (5040) (40320) (362880) (3628800) (39916800)

9 40320 141120 141120 58800 11760
(40320) (362880)l (3628800) (39916800) (479001600)

1 n-iUpper number is )(n-2)!/(m-l)!, lower number

II

is (n+m-2)!

I

'V
,

-13-



-Ic

c,4 r- v*

-44 Cn

r)-4 1-4 Ln -

'C

0

-4 -4 -n c-.In

C) -- C -4

-4 -4Lr 0 Cfi 0P CI 0

-4 a en -4 %0 C

-44 'U C I4 0 f h/0 0 0

.0c- tn -4 -

C-4-

C14 ___

Cli en J It 0 I. 0 0 m



REFERENCES

1. Ali, A. I., "Two Node-Routing Problems," unpublished dissertation,

Operations Research Department, Southern Methodist University,

Dallas, Texas (1980).

2. Bazaraa, M. S., and J. J. Goode, "The Travelling Salesman Problem:

A Duality Approach," Mathematical Programming, 13, (1977), 221-237.

3. Bellmore, M. and G. L. Nemhauser, "The Traveling Salesman Problem:

A Survey," Operations Research, 16, (1968), 538-558.

4. Bellmore, M. and J. C. Malone, "Pathology of Traveling-Salesman

Subtour - Elimination Algorithms," Operations Research, 19, (1971),

278-307.

5. Bellmore, M., and S. Hong, "Transformaation of Multisalesman Prob-

lem to the Standard Travelling Salesman Problem," Journal of the

Association of Computing Machinery, 21, 3, (1974), 500-504.

6. Christofides, N., "The Shortest Hamiltonian Chain of a Graph,"

S'iA Journal on Applied Mathematics, 19, (1970), 689-696.

7. Christofides, N., "The Travelling Salesman Problem," Combinatiorial

Optimization, N. Christofides, Editor, Johi Wiley and Sons, New

York, (1979).

8. Corneujols, J., and G. L. Nemhauser, "Tight Bounds for Christofides'

Travelling Salesman Heuristic," Mathematical Programming, 14, (1978),

116-121.

9. Evans, J. R., "Fundamental Circuits in a Complete Graph and the

Travelling Salesman Problem," Technical Report, Department of

Quantitative Analysis, University of Cincinatti (1979).

10. Flood, M. M., "The Travelling Salesman Problem," Operations Research,

4, (1956), 61-75.

-15-



11. Gavish, B., and S. C. Graves, "The Travelling Salesman Problem

and Related Problems," Technical Report, Graduate School of

Management, University of Rochester (1978).

12. Gavish, B., and K. Srikanth, "Optimal and Sub-Optimal Solution

Methods for the Multiple Travelling Salesman Problem," Presented

at the Joint National TIMS/ORSA Meeting, Washington, D. C. (1980).

13. Gilmore, P. C., and R. E. Gomory, "Sequencing a One State-Variable

Machine: A Solvable Case of the Travelling Salesman Problem,"

Operations Research, 12, (1974), 655-675.

14. Golden, B., L. Bodin, T. Doyle, and W. Stewart Jr., "Approximate

Travelling Salesman Algorithms," Operations Research, 28, 3, (1980),

694-711.

15. Grotschel, M. and M. W. Padberg, "On the Symmetric Travelling

Salesman Problem 1: Inequalities," Mathematical Programming,

16, 3, (1979), 265-280.

16. Gupta, J. N. D., "A Search Algorithm for the Traveling Salesman

Problem," Computers and Operations Research, 5, (1978), 243-250.

17. Hansen, K. H., and J. Krarup, "Improvements of the Held-Karp

Algorithm for the Symmetric Travelling Salesman Problem,"

Mathematical Programming, 7, (1974), 87-96.

18. Held, M., and R. M. Karp, "The Travelling Salesman Problem and

Minimum Spanning Trees," Operations Research, 18, (1970), 1138-

1162.

19. Held, M. and R. M. Karp, "The Travelling Salesman Problem and

Minimum Spanning Trees: Part II, Mathematical Programming, 1,

(1971), 6-25.

20. Hong, S. and M. W. Padberg, "A Note on the Symmetric Multiple

Traveling Salesman Problem with Fixed Charges," Operations

Research, 25, 5, (1977), 871-874.

-16-



21. Jonker, R., G. de Leve, J. A. van der Velde and A. Volgenant,

"Rounding Symmetric Traveling Salesman Problems with an Asym-

metric Assignment Problem," Operations Research, 28, 3, (1980),

623-627.

22. Karg, R. L. and G. L. Thompson, "A Heuristic Approach to Solv-

ing Travelling Salesman Problems," Management Science, 10,

(1964), 225-248.

23. Lin, S. and B. W. Kernighan, "An Effective Heuristic Algorithm

for the Travelling Salesman Problem," Operations Research, 21,

(1973), 498-516.

24. Miller, C. E., A. W. Tucker, and R. A. Zemlin, "Integer Program-

ming Formulation of Traveling Salesman Problems," Journal of the

Association of Computing Machinery, 7, (1960), 326-329.

25. Milotis, P., "Using Cutting Planes to Solve the Symmetric Travel-

ling Salesman Problem," Mathematical Pro _ra-ming, 15, (1978),

177-188.

26. Orloff, C. S., "Routing a Fleet of M Vehicles To/From a Central

Facility," Networks, 4, (1974), 147-162.

27. Papadimitrious, C. H., "The Euclidean Traveling Salesman Problem

Is NP-Complete," Theoretical Computer Science, 4, (1977), 237-244.

28. Papadimitrious, C. H., and K. Sieiglitz, "Some Examples of Diffi-

cult Traveling Salesman Problems," Operations Research, 26, (1978),

434-443.

29. Rao, M. R., "A Note on the Multiple Traveling Salesmen Problem,"

Operations Research, 28, 3, (1980), 628-632.

30. Russel, R. A., "An Effective Heuristic for the M-Tour Travelling

Salesman Problem With Some Side Constraints," Operations Research,

25, (1977), 517-524.

-17-



31. Smith, T. H. C., and G. L. Thompson, "A Lift Implicit Enumera-

tion Search Algorithm for the Symmetric Traveling Salesman

Problem Using Held and Karp's 1-Tree Relaxation," Annals of

Discrete Mathematics, 1, (1977), 479-493.

32. Smith, T. H. C., V. Srinivasan, and G. L. Thompson, "Computa-

tional Performance of Three Subtour Elimination Algorithms for

Solving Asymmetric Traveling Salesman Problems," Annals of Dis-

crete Mathematics, 1, (1977), 495-506.

33. Svetska, J. A., and V. E. Huckfeldt, "Computational Experience

With An M-Salesman Traveling Salesman Algorithm," Management

Science, 19, (1973), 790-799.

34. Syslo, M. M., "A New Solvable Case of the Travelling Salesman

Problem," Mathematical Programming, 4, (1973), 347-348.

35. Wiorkowski, J. J. and K. McElvain, "A Rapid Heuristic Algorithm

for the Approximate Solution of the Traveling Salesman Problem,"

Transportation Research, 9, (1975), 181-185.

36. Yamamota, Y., "The Held-Karp Algorithm and Degree Constrained

Minimum-Trees," Mathematical Programming, 15, (1978), 228-231.

i

It



T, TE led S",111.) TYPE 0F REPORT it PF.RIIO CIOVERED

- - - PERORMNG ORG. REPORT NM89

AUT ORs CONTRACT OR ERN Nk ctE(s)

I.1!Ali N6O014-75-C-0569,

l;T~I ~ _Southern Methodist University V F &S~ R ~ -..
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

Center for Cybernetic Studies, UT Austin
Austin, Texas 78712

II CONTROLLING OPFICE NAME AND ADDRESS

Office of Naval Research (Code 41.4) 1! 2
N1RO0P0 E

Washington, DC 20mME O AE

14. MONITORING AGENCY NAME & ADORESS(iI diferent from, Controlling Office) 15S SECURITY CLASS. (0Ot his reor3Ot)

I Unclassified

Vs. ECL ASSI F1C ATI OW/DOWN GRADINGI SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its distribution
is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY *OROS (Continue on reevee side it noc*00rean identify by block num ber)

M-travelling salesmen problem, enumeration treeI20. ADSTRACT (COntinue an revere1 cWdo It necilesmy and Identify by block nisintr)

This paper develops the number of feasible l UL ions (in-tours) for both

the asymmetric and symmetric i-travelling salesmen problens. The proofs are

constructive and it is shown how these results may be used to design an

enumeration tree for incorporation within a general branch-and-bound algor-

ithm. In addition, for the r-travelling salesmen probleni defined over the

Euclidean vector space in which the number of salesmen used is a decision

variable, it is shown that there exists an Optimal. Lour using only one

salesman.

DD Fols7 1473 -0;OitEOf I NOVG 4S 1OS0SOL111E Unclassified
SECURtITY CL ASSIFICATION OF THIS PAGE (0EN ftt

-- 4/* l q-


